NASA's Earth Science Enterprise

Mary Cleave
Deputy Associate Administrator (Formulation)
Office of Earth Science
NASA HQ
March 18, 2003

The NASA Vision

To improve life here, To extend life to there, To find life beyond.

The NASA Mission

To understand and protect our home planet, To explore the universe and search for life, To inspire the next generation of explorers ... as only NASA can.

Science (Questions Forcing	From the Response	e Researc	h Plan Prediction
Precipitation, evaporation & cycling of water changing?	Atmospheric constituents & solar radiation on climate?	Clouds & surface hydrological processes on climate?	Weather variation related to climate variation?	Weather forecasting improvement?
Global ocean circulation varying?	Changes in land cover & land use?	Ecosystem responses & affects on global carbon cycle?	Consequences in land cover & land use?	Transient climate variations?
Global ecosystems changing?	Surface transformation?	Changes in global ocean circulation?	Coastal region change?	Trends in long-term climate?
Stratospheric ozone changing?		Stratospheric trace constituent responses?		Future atmospheric chemical impacts?
Ice cover mass changing?		Sea level affected by climate change?		Future concentrations of carbon dioxide and methane?
Motions of Earth & interior processes?		Pollution effects?		

Earth Science National Applications

Carbon Management

Public Health

Energy Forecasting

Aviation Safety

Water Management

Homeland Security

Coastal Management

Disaster Preparedness

Agricultural Competitiveness

Invasive Species

Community Growth

Air Quality

Implementing Science for Society

- Engaging society in the Earth science enterprise is facilitated by identifying a concise set of important objectives within a framework of critical focus areas.
 - Current focus areas include:
 - Atmospheric Composition
 - Atmospheric Dynamics and Weather
 - Global Carbon Cycle and Ecosystems
 - Global Water and Energy Cycle
 - Oceans, Ice and Climate
 - Solid Earth Science

<u> Air Quality Management:</u> Clean Air Standards and Air Quality Forecasts

AURA - TES

Global/regional/local

distribution of ozone

Tropospheric mixing & B.L. interaction

DRAFT

EPA CMAQ & Forecasts by 2012:

- Robust emissions control planning
- Routine warnings of pollution events
- · 3-day air quality forecasts

Prevent:

- 15,000 premature deaths/year
- \$5-10 B reduced crop yields

Primary Partners:

Day/night chemistry/transport

- Trace gas measurements
- Boundary layer resolution

Outcomes: Improved pollution forecasts. Improved national emissions control planning/mitigation.

Impacts: Reduce major illnesses and deaths from air pollution episodes.

Outcomes: Source & destination of long-range dust & pollutants. Route airplanes. Issue health alerts and NAAQS waivers.

Impacts: Reduce wear on airplanes and engines. Improve crop estimates for international markets.

Improved capabilities to air quality management tools to assess, plan and implement emissions control strategies & improve air quality forecasts.

AURA - OMI

- Ozone profiles/transport
- Build on TOMS & GOME
- Aerosol & trace gas characteristics

Impacts: Reduce lung related diseases (asthma, bronchitis, pneumonia). Improve visibility. Improve crop health & vields.

- Optical depth data
- Continental inflow/outflow
- Robust satellite data assimilation

Outcomes: Quantify contributions of physical & chemical processes to pollutant concentrations. Improve ozone forecasting and regional transport. Impacts: Reduce impaired lung function and use of medications. Reduce hospital admissions and lost work/school days.

Validations

Ozone residuals

Better boundary conditions

CMAQ / Forecasts (c. 2002): SEPA State/regional planning. Same-day air quality predictions.

Outcomes: Assess effects of emission control options. Evaluate development options and emission strategies to set policies and construct SIPs.

Impacts: Improve economic development opportunities within States and Regions.

Current trajectory: Steady improvement in chemistry-transport models and pollution episode warnings.

2008

* Pre-formulation

Agua

AERONET

Aura

2004

CloudSat

CALIPSO

Total Column

2010 2012

2000

2002

From Science to Societal Impact (and Back Again)

ESE Needs for the Next Decade

- Science For Society
 - Providing decision makers with dependable, objective Earth
 Science knowledge to improve quality and sustainability of life
- ESE Roadmaps are improving our focus on science and applications products/results
 - Shifting our focus from missions and mission-defined data sets to answering key scientific questions
 - Building and utilizing consistent long-time series climate data records for key parameters identified in the roadmaps
 - Delivering the objective information, knowledge, and services needed by policy makers and decision makers in a timely and accurate manner